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ABSTRACT 

In this note we prove that the illumination of an almost bounded closed 

convex set by minimum number of afline subspaces of given dimension can 

be reduced to the illumination of a bounded closed convex set of lower 

dimension. 

1. In troduct ion  

Let K be a closed convex set of the d-dimensional Euclidean space E a with 

non-empty interior, where d > 1. We say that the affine subspace L C E a \ K 

of dimension 0 < dim L _< d - 1 illuminates the boundary point P of K if and 

only if there exists a point Q of L which illuminates P i.e. the ray emanating 

from P having direction vector Q-fi intersects the interior of K. Furthermore, we 

say that the afflne subspaces L1, L2 , . . . ,  L,, C E d \  K illuminate K if and only if 

every boundary point of K is illuminated by at least one of the affine subspaces 

L1, L2,..., Ln. Finally, let II(K) be the smallest number of affine subspaces of 

dimension I lying in E d \ K which illuminate K C E a, where 0 < I < d - 1. 

Obviously, 1 _< I a - l (K)  _< Ia-2(K) _< " "  _< 10(K). The following notion was 

introduced in [1]. A d-dimensional closed convex set K C E a is called almost 

bounded if and only if there exists a d-dimensional ball of E a which intersects 

every supporting hyperplane of K. Thus, the intersection of finitely many closed 

half-spaces of E d is almost bounded while rotating a parabola about the axis and 
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taking the convex hull of it in E d we get a d-dimensional  closed convex set which 

is not almost bounded. Clearly, there are many more examples of both types. It is 

proved in [1] that Io(K) is finite if and only if K is almost bounded. An equivalent 

condition was given in [5]. In this note we generalize this result in the following 

way. If K C E d is almost bounded, then let C denote the closed convex cone 

which is the union of closed half-lines emanating from an interior point say, O of 

K and lying in K. Moreover, let PrL : E d ---+ L denote the orthogonal projection 

of E d onto the afrme subspace O E L which is the orthogonal complement of 

the affine hull aff C of C in E d and let II[cl(PrL(K))] denote the corresponding 

illumination number of the closure cl(PrL(K))  of PrL(K)  in L, where 0 < I < 

d - 1. Obviously, if dim L < l, then we take II[cl(PrL(K))] -- 1. We prove the 

following 

THEOREM: Let K C E d be a d-dimensional almost bounded closed convex set 

and let 0 < 1 < d -  1. Then PrL(K)  is bounded and II(K) _< II[cI(PrL(K))] < 

-boo. 

If Io(K) < -boo for a d-dimensional  closed convex set K C E d, then the 

d-dimensional  ball containing finitely many points of E d \ K which illuminate 

K intersects every supporting hyperplane of K.  Thus, our Theorem implies the 

following well-known statement (see [1] and [5]). 

COROLLARY 1: Let K C E d be a d-dimensional closed convex set, where d > 1. 

Then I0(K) is finite i f  and only i l K  is almost bounded. 

It is a very natural but still open problem to characterize all d-dimensional  

closed convex sets K C E d for which I t (K) < +oo, with some 1 < I < d - 2. 

noltjanskii [4] observed that I0(B) = d + 1 for any smooth compact convex 

set B C E d with non-empty interior. Recently, the author [3] showed that if 

B C E d is a smooth compact convex set with non-empty interior, then I / (B)  = 

+ 1 = | t+l | ,  where 1 < l < d -  1. These statements and our Theorem 

imply 

COROLLARY 2: Let K ~ E d be a d-dimensional almost bounded smooth closed 

convex set and let 0 < l < d - 1. Then I t (K)  <_ | I+1 | • 

I-Iadwiger [7], [8] conjectured that any compact convex subset of E e with non- 

empty interior can be covered by 2 ~ smaller homothetic copies. This conjecture 
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has stimulated a lot of research in geometry (see [1]). The conjecture is proved 

for d = 2 (see [1], [4], [6] and [10]) but it is unsolved for d _> 3. Boltjanskii [4] 

and Soltan [12] showed that Hadwiger's conjecture is equivalent to the conjecture 

that I0(B) <_ 2 d for any compact convex subset B of E d with non-empty interior. 

In [1] and [2] another formulation of this problem is given. Namely, if B is a 

compact convex subset of E d that contains the origin O as an interior point, 

then I0(B) is the smallest number of hyperplanes of E d which strictly separate O 

from the faces of the polar body B* = {X • Ed[(O----~, O----1~) _< 1 for all Y • B}, 

where d _> 1 and ( , ) denotes the usual inner product of E d. See also the Lemma 

below for a generalization of this statement. [2] proves Hadwiger's conjecture for 

convex polyhedra with affine symmetry. In fact, [2] contains the following more 

general result. If P is a convex d -po ly tope  of E d with affine symmetry, then 

Id-3(P)  _< 8 and Id-2(P)  = 2, where d _> 3. Hence, this and our Theorem imply 

COROLLARY 3: I f P  C E d is a d-dimensional  convex polyhedral set (i.e. P is a 

d-dimensional  intersection of finitely many dosed half-spaces of E d) with atone 

symmetry, then Id-3(P)  < 8 and Id-2(P)  _< 2 for d -- 3, 4. 

2. P r o o f  o f  T h e o r e m  

The following statement is a more general version of Lemma 6, 7 and 8 in [11]. 

PROPOSITION: Let K C E d be a dosed convex set that contains the origin 0 

and let 5 r ~ 0 be the set of all faces of K which do not contain O, where d > 1. 

Then the polar set K* = {X • Ed](O---.-~,O---#) < 1 f o r a l l Y  • K} is a dosed 

convex set o rE  a with 0 • K*. I f  Y:* denotes the set of all faces of K* which are 

disjoint from O, then the map 

, : y ' ~  ~* 

r H F* = {X • g*[(O---~,O--l$ / = 1 for a/1Y • F} 

is a one-to-one map between ,7: and 3=* and it is inclusion reversing. 

Proof" First, we prove that F* is a face of K* with O ~ F*. Since F E .~ 

is a face of K with O 6 F therefore there exists a supporting hyperplane H = 

{Y e Ed[(o------~,O~00) = 1} of g with H N g = F and O e g C H + = {Y E 

Edl(O---f,b- 0) ___ 1}. Consequently, Xo • F*, i.e. F* # Now let Yo be a 
relative interior point of F i.e. Yo • rel int F.  Then H = {X • Ed[(O---~, ~ 0 )  = 

1} is a supporting hyperplane of K* because K* C H + = {X • Ed[(O-----~, ~00) _< 
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1} and (0 # )F*  C F '  = H n K*. We prove that also F* D F '  which then implies 

F* = F '  finishing the proof of the fact that F* is a face of K* with 0 ~ F*. 

Suppose that there exists Xo • F '  \ F*. Then we have a point 111 • F such that 

(~--~0, @ )  < 1. Since Y1 # Iio and Yo • rel int F therefore there exists a point 

Y2 • F with OY~ = A. OY1 + (1 - A). OY~ , 0 < A < 1. But (OXo,-0--~2) < 1 

consequently, (0-~0, ~00) = A-(O'X--00,0--~1)+(1-A)'(~00, O-Y-~) < A+ 1 - A  = 1, 

a contradiction. 

Secondly, we observe that (K*)* = K. If Y is an arbitrary point of K, then 

(O---~, 0--~) < 1 for all X • K*. Hence, K C (K*)*. We prove that K D (K*)*. 

Let Iio • E d \ K. So there exists a hyperplane H = {Y • Ed[(O---'~,~00) = 1} 

which strictly separates Yo from (O E)K, i.e. (0-~o, ~ 0 0 )  > 1 and (0---~, ~ 0 0 )  < 

1 for all Y • K. But then Xo E K* and so Iio • E d \ (K*)*. 

We finish the proof of Proposition showing that (F*)* = F for any face F • 2". 

We know that 

(F*)* = {Y • = 1 for all X • F*} 

= {Y • = 1 for all X • F*} D F. 

We have to show that (F*)* C F.  We have seen above that F = H N K with 

H = {Y E Edl(O----~,~--o0) = 1} and K C H + = {Y E Edl(O---~,~00) _< 1}. 

Hence, Xo E F*. So if Yo E K \ F ,  then (011"o, ~ o o )  < 1 i.e. Yo E K \ (F*)*. 

Having proved the above Proposition we can prove the following Lemma which 

is the cornerstone of the proof of our Theorem. Also, it is a slight generalization 

of the Separation Lemma of [2]. We need the following notation. If O ~ g is an 

afflne subspace of E d with 0 _< dim L _< d - 1, then L = AQeL{HQIH Q = {X E 

Ed[(O---~, 0-----0) = 1}} is an affine subspace of dimension dim/~ = d - d i m  L - 1  with 

0 ~ L. Finally, let L' = cl{X E EdlO--"~ = ~ + ~.  ~ with Y E L and ~ _> 0}. 

LEMMA: Let K be a closed convex set of E d that contains the origin 0 as an 

interior point and let Fm be the smallest dimensional face of K which contains 

the boundary point P of K,  where d > 1. Then the a~ne  subspace L C E d \ K 

of dimension 0 < dim L < d - 1 illuminates P if and only if L' N F* = 0 

saying in that case that L co-illuminates the face F *  = {X E K*](O----~, 0---~) = 

1 for all Y E Fro} of the polar set K* = {X E Ed[(O---~, 0--'~) < 1 for all Y E K}. 

Furthermore, II(K) = n if and only i f  n is the smallest integer such that there 
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exist a~ne  subspaces L1, L2, . . . , Ln orE  d of dimension d -  l -  1 with the property 

that every face of  the polar set K* which is disjoint from 0 can be co-illuminated 

by at least one of  the af~ne subspaces L1, L2,. .. , Ln, where 0 < I < d - 1. 

Proof'. The Proposition implies that the map *: ~" ~ .3"*, F ~ F* = {X E K*[ 

(0---~, O--~) = 1 for all Y E F} is a one-to-one map between .~" and ~'* and it is 

inclusion reversing. 

Let P(F ,  resp.) be a boundary point (face, resp.) of K. Then we define the 

following closed convex cones: 

C v  = [~{/-/+[H + is a supporting half-space to K bounded by H with P E/ ' /},  

CF = N { H + [ H  + is a supporting half-space to K bounded by H with F C H},  

C F  ---- ~ -{- CV with any P E aft F and 

c;~ = { x  • EdI(O----2, O---¢) < 0 for all r • ~F}  called polar cone o l a F .  
It is easy to prove that if F is a face of K, then 

C ~ =  {X • Edl 0----~ = ~. O---~ with $ _> 0 and (0---1-~, 0---~ / _<1 

for all Z • g and (O----l'~, O--~0) = 1 for all Z0 • F}. 

Thus, C~ = pos F*, where pos(.) denotes the positive hull of a set. 

Let Fm be the smallest dimensional face of K which contains the boundary 

point P of K. The affine subspace L C E d \ K of dimension I illuminates P if and 

only if there exists Q • L such that the open ray rP--. emanating from P having QP 
direction vector ~ lies in the interior int Cp  of Cp  i.e. rP--. C int CF,~. Then qp  

rP--~ C int Cfm if and only if (0---~, P---~) > 0 for any Y(#  O) • C* = pos F*.  Q p F,,~ 

As (0--¢, P--d) > 0 for any Y(~ O) • pos F,;, if and only if (0--¢, P--O) > 0 for 
any Y • F *  we get that the affine subspace L illuminates P if and only if there 

exists Q • L such that (0----~, 0--~) > (0---~, 0---~) -- 1 for any Y • Fm*. Thus, 

L illuminates P if and only if there exists Q • L such that the hyperplane 

HQ = {X • Ed](O----~,O----'~) = 1} D L strictly separates 0 from the face F *  = 

{X • g*](O---~,O---~) = 1 for all Y • Fm} of the polar set K*. Finally, this is 

true if and only if L' n F*  = 0 i.e. L co-illuminates the face F*  of K*. 

As the map *: ~- ~ 9 TM, F ~ F* = {X • K*I(O---~,O---~ / = 1 for all Y • F} 

is a one-to-one map having the above argument we get immediately that the 

affine subspaces L1, L 2 , . . . ,  Ln C E d \ K of dimension I illuminate K if and only 

if every face in .~'* of the polar set K* can be co-illuminated by at least one of 

the affine subspaces Li = NQEL, {HQ = {X • Eal(O----~, 0----~) = 1}} i = 1, 2 , . . . ,  n 

of dimension d - l - 1. This completes the proof of the lemma. | 
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The proof of our Theorem relies on the Lemma. We assume that K C E d is 

an almost bounded closed convex set that contains the origin O as an interior 

point. Thus, the Proposition yields that K* C E d is a compact convex set with 

O E K* and since K is almost bounded dist (U~'*,O) > 0. Let F*  be the 

smallest dimensional face of K* which contains O. F*  can be identical to the 

improper face K*. 

We prove that O E rel int F~  using induction on the dimension d*(> 1) of 

K*. If d* = 1 or d* = 2, then it is easy to see that O E rel int F*.  So suppose 

that the claim is true for any d*-dimensional compact convex set whose faces 

not containing O are bounded away from O and take a d*-dimensional compact 

convex set K* C E d~ with O lying on the boundary bd K* of K* and with dist 

(U.F*, O) > 0, where 2 g d I < d*. Let 

- o  denotes the closed ray emanating c "  = U(r l-o to--. 2 

from 0 having direction vector ~ with (0  # ) X  E K*}. 

It is obvious that dist (U~*, O) > 0 if and only if there exists a d*-dimensional 

closed ball Ba'(O,¢)  C E d" centered at O with radius ~ > 0 such that K* N 

Bd'(O,¢)  = O* N Bd'(O,¢). Let H,,  C E d" be the supporting hyperplane of 

K* for which H,,, t3 K* = F,~. Since in case of 0 E rel int F*  we are done we 

suppose that 0 E rel bd F*  = F*  \ rel int F*.  Consequently, dim F*  > 1. As 

dim F*  < dim K* = d* and F* A Bd" ( O, ~ ) = ((3* ¢I H,,, ) N Bd" ( O , E ) i.e. the 

union of the faces of F* which are disjoint from O lies at distance >_ ¢ from O 

we get by induction that F* possesses a face F *  with 0 E rel int F~,, (Fig. 1). 

Hence, there exists a (d* - 2)-dimensional afilne subspace H, ,  which supports F*  

in H,,, such that H,,, M F* = H , , , N K * = F * .  Let (O - -±  E)H,n be the 2-dimensional 

afflne subspace of E d" which is totally orthogonal to H'm and let Pr (K*)  be the 
- - t  

orthogonal projection of K* onto H m parallel to H,~. Obviously, Pr(K*)  is a 

convex domain whose boundary contains O and Pr(K*)  I3 B d• (O, e) = Pr(C*)  N 

Bd*(O,e) i.e. every face of Pr(K*) which is disjoint from 0 lies at distance >_ 

from O. Consequently, by induction there exists a face Pr(Fm ~) of Pr(K*)  with 

O E tel int Pr(Fm£). Hence, for the face Fm ~ of K* whose orthogonal projection 
- - . l .  

onto H m is P r ( F ~ )  we have that O E tel int F ~  and F*  # F, ,  ~, a contradiction. 

Thus, O E rel int F~,. 

It is easy to show that the cone C* defined above is the polar cone of C. Thus, 
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we have 

Fig. 1 

K* = { X  E EdJ{O----~, 0---~) _< 1 for all Y 6 K} 

= { x  ~ E~i(O--~, O--P) < I fo~ ~ l  Y ~ bd K} 

N { x  ~ E~I(O--~, 0---~) _< 0 for all Z ~ C} 

={X e Ed[(O---~,O---~)_< l for all Y E bd K} NC* and 

[P~L(K)I "n ={X • LI(O--~,OP~L(Yi) < 1 for all Y • K} 

=¢X • LI(O--V2,0P~L(Yi) < 1 for all Y • bd K} 

={X • L[(O-~,O---~) _< 1 for all Y • bd K} 

=L N {X • Ed[(O---.~, O--1}) _< 1 for all Y • bd K}. 

Then 

[PrL(K)] *L n C* = L[') ({X • Ed[(o---~,O---~) _( 1 for all Y • bd K} N C*) 

= L N K * .  
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Since L is totally orthogonal to aft C therefore L C (3* and so [PrL(K)] *L = 

[PrL(K)] "L ~) C* = L I-) K*. We have proved that  O E rel int F,~*,. This implies 

that  air F *  = L from which we get that  

[cl(PrL(K))] *i = [PrL(K)] i = L N K* = F,,*. 

As a partial  result we have got that  PrL(K)  is bounded. The Lemma implies 

that  Ii[cl(PrL(K))] is the smallest integer n such that  there exist affine subspaces 

L1, L 2 , . . . ,  L ,  of L of dimension dim L - l - 1 with the property that  every face 

of the polar set F *  can be co-illuminated by at least one of the affine subspaces 

L 1 , L 2 , . . .  , L , ,  where 0 < I < dim L - 1. We distinguish Case 1: F *  = K* and 

Case 2: F~,* is a face of dimension _< d* - 1 of K*, where dim K* = d* > 1. 

CASE 1: Either K = c l (PrL(K))  or K is a cylinder with base c l (PrL(K)) .  

Thus, it is obvious that  I l (K) <_ It[cl(PrL(K))]. Finally, as cl (PrL(g))  is com- 

pact  it is sufficient to recall the known fact that 

II[cl(PrL(K))] < Io[cl(PrL(K))] < +oo 

(see [11 or [4]). 

CASE 2: F,,* is a face of dimension < (d* - 1) of tile d*-dimensional  com- 

pact convex set K* C E d" with 0 E rel int F,* and dist (U.7"*,O) > 0. We 

have seen that  [cl(PrL(K))] "L = F~,*, where O E L = aft F,,* is the orthog- 

onal complement of aft C in E d. Since F~,* is bounded therefore Case 1 and 

the Lemma  imply that there are affine subspaces H1 (m), H 2 ( m ) , . . . ,  H,,(m) of 

L of dimension dim L - 1 - 1 with the property that n = I~[cl(PrL(K))] and 

every face of the polar set F,* can be co-illuminated by at least one of the 

affine subspaces H l ( m ) , U 2 ( m ) , . . . , H , , ( m ) ,  where 0 < l < dim L - 1. Let S 

( H + , r e s p . )  be the SUl)porting hyperplane (supporting half-space bounded by 

H,  resp.) of K* in E a" with H fl K* = FT,. Let Hi be the affine subspace of 

E a" of dimension d* - l - 1 orthogonal to aft F,,* with Hi fl aft F,,* = Hi(m),  

where 1 < i < n. Finally, let B d" (0 ,  R) be a d*-dimensional closed ball of E a" 

centered at 0 with radius R > 0 such that  int Bd'(O,  R) D K*. There are 

many  ways to rotate Hi about Hi(m) toward O. We choose the following. Let 

h be the affine function which is positive on H + and zero on H and which sat- 

isfies [h(P)[ = 1 for points P lying at distance 1 from H.  For i = 1 , . . . , n  let 

H,[e] = { X  E Ed'l ~ = 0--~ + e. Q-~ + h(P) . ~ with P E H,} of dimension 
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d* - l - 1, where Q is a point in Hi(m) and e > 0. One can easily verify that 

Hi[e]' N H + N B a" (O, R) tends to Hi(m)'  fq B d" (O, R) in the Hansdorff metric, as 

e tends to 0. (The notation ' is the same as in the Lemma.) 

Now the claim is that for some e > 0 and for every face F* of K* disjoint 

from O one of the affine subspaces Hi[e] co-illuminates F*, where 1 < i < n. If 

not, then there is a sequence of faces F*(k) of K* which are disjoint from O and 

F*(k)  intersects each of the sets H .Ill '  where 1 < i < n. The Blaschke selection aLk| 

theorem ([9], pp. 98) implies that a subsequence of the sequence F*(k)  will 

converge. Say the limit is M. M cannot contain O, since the faces of K* which 

(to not contain O are bounded away from O. Because O is a relative interior point 

of F* ,  it follows that the same holds for every relative interior point of Fro* , and 

therefore M does not intersect the relative interior of F* .  As M is convex, this 

shows that M CI F~ is contained in a proper face , say F*, of Fro*. But M must 

intersect each of the Hausdorff limits of the sequences Hi[~]' Iq H + Cl B a" (O, R). 

These Hansdorff limits are just Hi(m)'  N B a" (O, R) and one gets a contradiction, 

since that implies that F* is not co-illuminated by any of the affine subspaces 

Hi(m).  

This completes the proof of the theorem. II 

ACKNOWLEDGEMENT: The author is indebted to the referee for the valuable 

remarks which simplified the proof of Case 2. 
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