ON THE ILLUMINATION OF UNBOUNDED CLOSED CONVEX SETS

BY

KÁROLY BEZDEK*

Department of Geometry, Eötvös L. University 1088 Budapest, Rdkdczi dt 5, Hungary

ABSTRACT

In this note we prove that the illumination of an almost bounded closed **convex** set by minimum number of afline subspaces of given dimension **can** be reduced to the illumination of a bounded closed convex **set of lower** dimension.

1. Introduction

Let K be a closed convex set of the d -dimensional Euclidean space \mathbf{E}^d with non-empty interior, where $d \geq 1$. We say that the affine subspace $L \subset \mathbf{E}^d \setminus \mathbf{K}$ of dimension $0 \leq \dim L \leq d-1$ illuminates the boundary point P of K if and only if there exists a point Q of L which illuminates P i.e. the ray emanating from P having direction vector \overrightarrow{QP} intersects the interior of K. Furthermore, we say that the affine subspaces $L_1, L_2, \ldots, L_n \subset \mathbb{E}^d \setminus K$ illuminate K if and only if every boundary point of K is illuminated by at least one of the affine subspaces L_1, L_2, \ldots, L_n . Finally, let $I_l(K)$ be the smallest number of affine subspaces of dimension *l* lying in $\mathbf{E}^d \setminus \mathbf{K}$ which illuminate $\mathbf{K} \subsetneq \mathbf{E}^d$, where $0 \leq l \leq d-1$. Obviously, $1 \leq I_{d-1}(\mathbf{K}) \leq I_{d-2}(\mathbf{K}) \leq \cdots \leq I_0(\mathbf{K})$. The following notion was introduced in [1]. A d-dimensional closed convex set $K \subsetneq E^d$ is called almost bounded if and only if there exists a d -dimensional ball of \mathbf{E}^d which intersects every supporting hyperplane of K. Thus, the intersection of finitely many closed half-spaces of E^d is almost bounded while rotating a parabola about the axis and

^{*} The work was supported by Hung. Nat. Found. for Sci. Research No. 326-0213 Received June 17, 1991 and in revised form January 20, 1992

taking the convex hull of it in E^d we get a d-dimensional closed convex set which is not almost bounded. Clearly, there are many more examples of both types. It is proved in [1] that $I_0(K)$ is finite if and only if K is almost bounded. An equivalent condition was given in [5]. In this note we generalize this result in the following way. If $K \subsetneq E^d$ is almost bounded, then let C denote the closed convex cone which is the union of closed half-lines emanating from an interior point say, O of K and lying in K. Moreover, let $Pr_L : E^d \to L$ denote the orthogonal projection of \mathbf{E}^d onto the affine subspace $O \in L$ which is the orthogonal complement of the affine hull aff C of C in E^d and let $I_i[\text{cl}(Pr_L(\mathbf{K}))]$ denote the corresponding illumination number of the closure $cl(Pr_L(K))$ of $Pr_L(K)$ in L, where $0 \le l \le$ $d-1$. Obviously, if dim $L \leq l$, then we take $I_l[\text{cl}(Pr_L(\mathbf{K}))] = 1$. We prove the following

THEOREM: Let $K \subsetneq E^d$ be a *d*-dimensional almost bounded closed convex set and let $0 \leq l \leq d-1$. Then $Pr_L(K)$ is bounded and $I_l(K) \leq I_l[cl(Pr_L(K))]$ < *-boo.*

If $I_0(K)$ < $+\infty$ for a d-dimensional closed convex set $K \subsetneq E^d$, then the d-dimensional ball containing finitely many points of $E^d \setminus K$ which illuminate K intersects every supporting hyperplane of K. Thus, our Theorem implies the following well-known statement (see [1] and [5]).

COROLLARY 1: Let $K \subsetneq E^d$ be a d-dimensional closed convex set, where $d \geq 1$. Then $I_0(K)$ *is finite if and only if* K *is almost bounded.*

It is a very natural but still open problem to characterize all d -dimensional closed convex sets $K \subsetneq E^d$ for which $I_l(K) < +\infty$, with some $1 \leq l \leq d-2$.

Boltjanskii [4] observed that $I_0(\mathbf{B}) = d + 1$ for any smooth compact convex set $B \subset E^d$ with non-empty interior. Recently, the author [3] showed that if $B \subset E^d$ is a smooth compact convex set with non-empty interior, then $I_l(B)$ = $\left\lfloor \frac{d-\left\lceil \frac{d}{l+1} \right\rceil}{l} \right\rfloor + 1 = \left\lceil \frac{d+1}{l+1} \right\rceil$, where $1 \leq l \leq d-1$. These statements and our Theorem imply

COROLLARY 2: Let $K \subsetneq E^d$ be a d-dimensional almost bounded smooth closed *convex set and let* $0 \le l \le d - 1$ *. Then* $I_l(K) \le \left\lceil \frac{d+1}{l+1} \right\rceil$ *.*

Hadwiger [7], [8] conjectured that any compact convex subset of E^d with nonempty interior can be covered by 2^d smaller homothetic copies. This conjecture has stimulated a lot of research in geometry (see [1]). The conjecture is proved for $d = 2$ (see [1], [4], [6] and [10]) but it is unsolved for $d \geq 3$. Boltjanskii [4] and Soltan [12] showed that Hadwiger's conjecture is equivalent to the conjecture that $I_0(\mathbf{B}) \leq 2^d$ for any compact convex subset **B** of \mathbf{E}^d with non-empty interior. In [1] and [2] another formulation of this problem is given. Namely, if **B** is a compact convex subset of E^d that contains the origin O as an interior point, then $I_0(\mathbf{B})$ is the smallest number of hyperplanes of \mathbf{E}^d which strictly separate O from the faces of the polar body $\mathbf{B}^* = \{X \in \mathbf{E}^d | \langle \overrightarrow{OX}, \overrightarrow{OY} \rangle \leq 1 \text{ for all } Y \in \mathbf{B} \},\$ where $d \ge 1$ and \langle , \rangle denotes the usual inner product of \mathbf{E}^d . See also the Lemma below for a generalization of this statement. [2] proves Hadwiger's conjecture for convex polyhedra with affine symmetry. In fact, [2] contains the following more general result. If P is a convex d -polytope of E^d with affine symmetry, then $I_{d-3}(\mathbf{P}) \leq 8$ and $I_{d-2}(\mathbf{P}) = 2$, where $d \geq 3$. Hence, this and our Theorem imply COROLLARY 3: If $P \subsetneq E^d$ is a d-dimensional convex polyhedral set (i.e. P is a *d*-dimensional intersection of finitely many closed half-spaces of E^d) with affine symmetry, then $I_{d-3}(\mathbf{P}) \leq 8$ and $I_{d-2}(\mathbf{P}) \leq 2$ for $d = 3, 4$.

2. Proof of Theorem

The following statement is a more general version of Lemma 6, 7 and 8 in [11].

PROPOSITION: Let $K \subset E^d$ be a closed convex set that contains the origin O and let $\mathcal{F} \neq \emptyset$ be the set of all faces of K which do not contain O, where $d \geq 1$. *Then the polar set* $K^* = \{X \in \mathbf{E}^d | \langle \overrightarrow{OX}, \overrightarrow{OY} \rangle \leq 1 \text{ for all } Y \in K \}$ is a closed *convex set of* E^d with $O \in K^*$. If \mathcal{F}^* denotes the set of all faces of K^* which are *disjoint* from O, *then the* map

* :
$$
\mathcal{F} \to \mathcal{F}^*
$$

\n $F \mapsto F^* = \{ X \in \mathbf{K}^* | \langle \overrightarrow{OX}, \overrightarrow{OY} \rangle = 1 \text{ for all } Y \in F \}$

is a one-to-one map between $\mathcal F$ and $\mathcal F^*$ and it is inclusion reversing.

Proof: First, we prove that F^* is a face of K^* with $O \notin F^*$. Since $F \in \mathcal{F}$ is a face of K with O \notin F therefore there exists a supporting hyperplane H = ${Y \in \mathbf{E}^d | \langle \overrightarrow{OY}, \overrightarrow{OX_0} \rangle = 1}$ of K with $H \cap K = F$ and $O \in K \subset H^+ = {Y \in \mathbb{R}^d | \langle \overrightarrow{OY}, \overrightarrow{OX_0} \rangle = 1}$ $\mathbf{E}^d \setminus \langle \overrightarrow{OY}, \overrightarrow{OX_0} \rangle \leq 1$. Consequently, $X_o \in F^*$, i.e. $F^* \neq \emptyset$. Now let Y_o be a relative interior point of F i.e. $Y_o \in \text{rel int } F$. Then $H = \{X \in \mathbb{E}^d | \langle \overrightarrow{OX}, \overrightarrow{OY_0} \rangle =$ 1} is a supporting hyperplane of K^* because $K^* \subset H^+ = \{X \in \mathbb{E}^d | \langle \overrightarrow{OX}, \overrightarrow{OY_0} \rangle \leq$

1} and $(\emptyset \neq)F^* \subset F' = H \cap K^*$. We prove that also $F^* \supset F'$ which then implies $F^* = F'$ finishing the proof of the fact that F^* is a face of K^* with $O \notin F^*$. Suppose that there exists $X_o \in F' \setminus F^*$. Then we have a point $Y_1 \in F$ such that $\langle O(X_0, OY_1) \rangle < 1$. Since $Y_1 \neq Y_0$ and $Y_0 \in \text{rel int } F$ therefore there exists a point $Y_2 \in F$ with $\overrightarrow{OY_0} = \lambda \cdot \overrightarrow{OY_1} + (1 - \lambda) \cdot \overrightarrow{OY_2}$, $0 < \lambda < 1$. But $\langle \overrightarrow{OX_0}, \overrightarrow{OY_2} \rangle \leq 1$ consequently, $\langle \overrightarrow{OX_0}, \overrightarrow{OY_0}\rangle = \lambda \cdot \langle \overrightarrow{OX_0}, \overrightarrow{OY_1}\rangle + (1-\lambda) \cdot \langle \overrightarrow{OX_0}, \overrightarrow{OY_2}\rangle < \lambda+1-\lambda=1,$ a contradiction.

Secondly, we observe that $(K^*)^* = K$. If Y is an arbitrary point of K, then $\langle \overrightarrow{OX}, \overrightarrow{OY} \rangle \leq 1$ for all $X \in \mathbf{K}^*$. Hence, $\mathbf{K} \subset (\mathbf{K}^*)^*$. We prove that $\mathbf{K} \supset (\mathbf{K}^*)^*$. Let $Y_o \in \mathbf{E}^d \setminus \mathbf{K}$. So there exists a hyperplane $H = \{ Y \in \mathbf{E}^d | \langle \overrightarrow{OY}, \overrightarrow{OX_0} \rangle = 1 \}$ which strictly separates Y_o from $(O \in)$ K, i.e. $\langle \overrightarrow{OY_o}, \overrightarrow{OX_0} \rangle > 1$ and $\langle \overrightarrow{OY}, \overrightarrow{OX_0} \rangle <$ 1 for all $Y \in \mathbf{K}$. But then $X_o \in \mathbf{K}^*$ and so $Y_o \in \mathbf{E}^d \setminus (\mathbf{K}^*)^*$.

We finish the proof of Proposition showing that $(F^*)^* = F$ for any face $F \in \mathcal{F}$. We know that

$$
(F^*)^* = \{ Y \in (\mathbf{K}^*)^* | \langle \overrightarrow{OY}, \overrightarrow{OX} \rangle = 1 \text{ for all } X \in F^* \}
$$

$$
= \{ Y \in K | \langle \overrightarrow{OY}, \overrightarrow{OX} \rangle = 1 \text{ for all } X \in F^* \} \supset F.
$$

We have to show that $(F^*)^* \subset F$. We have seen above that $F = H \cap K$ with $H = \{ Y \in \mathbf{E}^d | \langle \overrightarrow{OY}, \overrightarrow{OX_0} \rangle = 1 \}$ and $K \subset H^+ = \{ Y \in \mathbf{E}^d | \langle \overrightarrow{OY}, \overrightarrow{OX_0} \rangle \leq 1 \}.$ Hence, $X_o \in F^*$. So if $Y_o \in K \setminus F$, then $\langle \overrightarrow{OY_0}, \overrightarrow{OX_0} \rangle < 1$ i.e. $Y_o \in K \setminus (F^*)^*$. П

Having proved the above Proposition we can prove the following Lemma which is the cornerstone of the proof of our Theorem. Also, it is a slight generalization of the Separation Lemma of [2]. We need the following notation. If $O \notin L$ is an affine subspace of E^d with $0 \le \dim L \le d-1$, then $\hat{L} = \bigcap_{Q \in L} \{H_Q | H_Q = \{X \in$ $\mathbf{E}^d|\langle\overrightarrow{OX},\overrightarrow{OQ}\rangle=1\}$ is an affine subspace of dimension dim $\hat{L}=d-\dim L-1$ with $O \notin \hat{L}$. Finally, let $\hat{L}' = cl\{X \in \mathbf{E}^d | \overrightarrow{OX} = \overrightarrow{OY} + \lambda \cdot \overrightarrow{YO} \text{ with } Y \in \hat{L} \text{ and } \lambda \geq 0\}.$

LEMMA: Let K be a closed convex set of E^d that contains the origin O as an *interior point and let Fm be the smallest dimensional face of K which contains the boundary point P of K, where* $d \geq 1$ *. Then the affine subspace* $L \subset \mathbf{E}^d \setminus \mathbf{K}$ *of dimension* $0 \leq dim L \leq d - 1$ *illuminates* P if and only if $\hat{L}' \cap F_m^* = \emptyset$ saying in that case that \hat{L} co-illuminates the face $F_m^* = \{X \in K^* \mid \langle \overline{OX}, \overline{OY} \rangle =$ *1 for all Y* \in F_m *} of the polar set* $\mathbf{K}^* = \{X \in \mathbf{E}^d | \langle \overrightarrow{OX}, \overrightarrow{OY} \rangle \leq 1$ for all Y \in **K** $\}.$ *Furthermore,* $I_i(K) = n$ *if and only if n is the smallest integer such that there* *exist affine subspaces* $\hat{L}_1, \hat{L}_2, \ldots, \hat{L}_n$ of \mathbf{E}^d of dimension $d-l-1$ with the property *that every face of the polar set* K* *which is disjoint from* 0 can be *co-illuminated by at least one of the affine subspaces* $\hat{L}_1, \hat{L}_2, \ldots, \hat{L}_n$, where $0 \leq l \leq d-1$.

Proof: The Proposition implies that the map $* : \mathcal{F} \to \mathcal{F}^*, F \mapsto F^* = \{X \in \mathbf{K}^*\}$ $\langle \overrightarrow{OX}, \overrightarrow{OY} \rangle = 1$ for all $Y \in F$ is a one-to-one map between $\mathcal F$ and $\mathcal F^*$ and it is inclusion reversing.

Let $P(F, resp.)$ be a boundary point (face, resp.) of K. Then we define the following closed convex cones:

 $C_P = \bigcap \{H^+|H^+|$ is a supporting half-space to K bounded by H with $P \in H\}$, $C_F = \bigcap \{H^+|H^+|$ is a supporting half-space to K bounded by H with $F \subset H\}$, $\overline{\mathbf{C}}_F = \overrightarrow{PO} + \mathbf{C}_F$ with any $P \in \text{aff } F$ and $\mathbf{C}_F^* = \{X \in \mathbf{E}^d | \langle \overrightarrow{OX}, \overrightarrow{OY} \rangle \leq 0 \text{ for all } Y \in \overline{\mathcal{C}}_F\}$ called polar cone of $\overline{\mathcal{C}}_F$.

It is easy to prove that if F is a face of K , then

$$
\mathbf{C}_F^* = \{ X \in \mathbf{E}^d | \overrightarrow{OX} = \lambda \cdot \overrightarrow{OY} \text{ with } \lambda \ge 0 \text{ and } \langle \overrightarrow{OY}, \overrightarrow{OZ} \rangle \le 1
$$

for all $Z \in \mathbf{K}$ and $\langle \overrightarrow{OY}, \overrightarrow{OZ}_0 \rangle = 1$ for all $Z_0 \in F \}.$

Thus, $C_F^* = pos F^*$, where pos(.) denotes the positive hull of a set.

Let F_m be the smallest dimensional face of K which contains the boundary point P of K. The affine subspace $L \subset \mathbf{E}^d \setminus \mathbf{K}$ of dimension *l* illuminates P if and only if there exists $Q \in L$ such that the open ray $r^P_{\overline{OP}}$ emanating from P having direction vector $Q\vec{P}$ lies in the interior int C_P of C_P i.e. $r^P_{Q\vec{P}}\subset \text{int } C_{F_m}$. Then $r_{\overline{OB}}^P \subset \text{int } \mathbf{C}_{F_m}$ if and only if $\langle \overrightarrow{OY}, \overrightarrow{PQ} \rangle > 0$ for any $Y(\neq O) \in \mathbf{C}_{F_m}^* = \text{pos } F_m^*$. $\overrightarrow{A}s \langle \overrightarrow{OY}, \overrightarrow{PQ} \rangle > 0$ for any $Y(\neq O) \in \text{pos } F_m^*$ if and only if $\langle \overrightarrow{OY}, \overrightarrow{PQ} \rangle > 0$ for any $Y \in F_m^*$ we get that the affine subspace L illuminates P if and only if there exists $Q \in L$ such that $\langle \overrightarrow{OY}, \overrightarrow{OQ} \rangle > \langle \overrightarrow{OP}, \overrightarrow{OP} \rangle = 1$ for any $Y \in F_m^*$. Thus, L illuminates P if and only if there exists $Q \in L$ such that the hyperplane $H_Q = \{X \in \mathbb{E}^d | \langle \overrightarrow{OX}, \overrightarrow{OQ} \rangle = 1\} \supset \hat{L}$ strictly separates O from the face $F_m^* =$ ${X \in K^* | \langle \overrightarrow{OX}, \overrightarrow{OY} \rangle = 1 \text{ for all } Y \in F_m}$ of the polar set K^{*}. Finally, this is true if and only if $\hat{L}' \cap F_m^* = \emptyset$ i.e. \hat{L} co-illuminates the face F_m^* of \mathbf{K}^* .

As the map $\ast: \mathcal{F} \to \mathcal{F}^*, F \mapsto F^* = \{X \in K^* | \langle \overrightarrow{OX}, \overrightarrow{OY} \rangle = 1 \text{ for all } Y \in F\}$ is a one-to-one map having the above argument we get immediately that the affine subspaces $L_1, L_2, \ldots, L_n \subset \mathbf{E}^d \setminus \mathbf{K}$ of dimension *l* illuminate **K** if and only if every face in \mathcal{F}^* of the polar set \mathbf{K}^* can be co-illuminated by at least one of the affine subspaces $\hat{L}_i = \bigcap_{Q \in L_i} \{ H_Q = \{ X \in \mathbf{E}^d | \langle \overrightarrow{OX}, \overrightarrow{OQ} \rangle = 1 \} \} i = 1, 2, \ldots, n$ of dimension $d - l - 1$. This completes the proof of the lemma.

The proof of our Theorem relies on the Lemma. We assume that $K \subsetneq E^d$ is an almost bounded closed convex set that contains the origin O as an interior point. Thus, the Proposition yields that $K^* \subset E^d$ is a compact convex set with $O \in \mathbf{K}^*$ and since K is almost bounded dist $(\cup \mathcal{F}^*, O) > 0$. Let F_m^* be the smallest dimensional face of K^* which contains O. F_m^* can be identical to the improper face K*.

We prove that $O \in \text{rel int } F_m^*$ using induction on the dimension $d^*(\geq 1)$ of K^{*}. If $d^* = 1$ or $d^* = 2$, then it is easy to see that $O \in \text{rel int } F_m^*$. So suppose that the claim is true for any d' -dimensional compact convex set whose faces not containing O are bounded away from O and take a d^* -dimensional compact convex set $K^* \subset E^{d^*}$ with O lying on the boundary bd K^* of K^* and with dist $(\cup \mathcal{F}^*, O) > 0$, where $2 \leq d' < d^*$. Let

$$
C^* = \bigcup \{ \overline{r}_{\overline{OX}}^O | \overline{r}_{\overline{OX}}^O \text{ denotes the closed ray emanating} \text{ from } O \text{ having direction vector } \overline{OX} \text{ with } (O \neq)X \in K^* \}.
$$

It is obvious that dist $(\cup \mathcal{F}^*, O) > 0$ if and only if there exists a d^* -dimensional closed ball $B^{d^*}(O, \varepsilon) \subset \mathbf{E}^{d^*}$ centered at O with radius $\varepsilon > 0$ such that $\mathbf{K}^* \cap$ $B^{d^*}(O,\varepsilon) = \mathbf{C}^* \cap B^{d^*}(O,\varepsilon)$. Let $H_m \subset \mathbf{E}^{d^*}$ be the supporting hyperplane of \mathbf{K}^* for which $H_m \cap \mathbf{K}^* = F_m^*$. Since in case of $O \in \text{rel int } F_m^*$ we are done we suppose that $O \in \text{rel bd } F_m^* = F_m^* \setminus \text{rel int } F_m^*$. Consequently, dim $F_m^* \geq 1$. As dim F_m^* < dim $K^* = d^*$ and $F_m^* \cap B^{d^*}(O, \varepsilon) = (\mathbf{C}^* \cap H_m) \cap B^{d^*}(O, \varepsilon)$ i.e. the union of the faces of F_m^* which are disjoint from O lies at distance $\geq \varepsilon$ from O we get by induction that F_m^* possesses a face \overline{F}_m^* with $O \in \text{rel int } \overline{F}_m^*$ (Fig. 1). Hence, there exists a (d^*-2) -dimensional affine subspace \overline{H}_m which supports F_m^* in H_m such that $\overline{H}_m \cap F_m^* = \overline{H}_m \cap K^* = \overline{F}_m^*$. Let $(O \in)\overline{H}_m^{\perp}$ be the 2-dimensional affine subspace of E^{d^*} which is totally orthogonal to \overline{H}_m and let $Pr(\mathbf{K}^*)$ be the orthogonal projection of K^* onto \overline{H}_m^{\perp} parallel to \overline{H}_m . Obviously, $Pr(K^*)$ is a convex domain whose boundary contains O and $Pr(\mathbf{K}^*) \cap B^{d^*}(O, \varepsilon) = Pr(\mathbf{C}^*) \cap$ $B^{d^*}(O,\varepsilon)$ i.e. every face of $Pr(\mathbf{K}^*)$ which is disjoint from O lies at distance $\geq \varepsilon$ from O. Consequently, by induction there exists a face $Pr(F_m^{\perp})$ of $Pr(\mathbf{K}^*)$ with $O \in \text{rel int } Pr(F_m^{\perp})$. Hence, for the face F_m^{\perp} of K^* whose orthogonal projection onto \overline{H}_{m}^{\perp} is $Pr(F_{m}^{\perp})$ we have that $O \in \text{rel int } F_{m}^{\perp}$ and $F_{m}^{*} \neq F_{m}^{\perp}$, a contradiction. Thus, $O \in \text{rel int } F_m^*$.

It is easy to show that the cone C^* defined above is the polar cone of C. Thus,

Fig. 1

we have

$$
\mathbf{K}^* = \{ X \in \mathbf{E}^d | \langle \overrightarrow{OX}, \overrightarrow{OY} \rangle \le 1 \text{ for all } Y \in \mathbf{K} \}
$$

\n
$$
= \{ X \in \mathbf{E}^d | \langle \overrightarrow{OX}, \overrightarrow{OY} \rangle \le 1 \text{ for all } Y \in \text{bd } \mathbf{K} \}
$$

\n
$$
\bigcap \{ X \in \mathbf{E}^d | \langle \overrightarrow{OX}, \overrightarrow{OZ} \rangle \le 0 \text{ for all } Z \in \mathbf{C} \}
$$

\n
$$
= \{ X \in \mathbf{E}^d | \langle \overrightarrow{OX}, \overrightarrow{OY} \rangle \le 1 \text{ for all } Y \in \text{bd } \mathbf{K} \} \cap \mathbf{C}^* \text{ and}
$$

\n
$$
[Pr_L(\mathbf{K})]^{*L} = \{ X \in L | \langle \overrightarrow{OX}, \overrightarrow{OPr_L(Y)} \rangle \le 1 \text{ for all } Y \in \mathbf{K} \}
$$

\n
$$
= \{ X \in L | \langle \overrightarrow{OX}, \overrightarrow{OPr_L(Y)} \rangle \le 1 \text{ for all } Y \in \text{bd } \mathbf{K} \}
$$

\n
$$
= \{ X \in L | \langle \overrightarrow{OX}, \overrightarrow{OY} \rangle \le 1 \text{ for all } Y \in \text{bd } \mathbf{K} \}
$$

\n
$$
= L \cap \{ X \in \mathbf{E}^d | \langle \overrightarrow{OX}, \overrightarrow{OY} \rangle \le 1 \text{ for all } Y \in \text{bd } \mathbf{K} \}.
$$

Then

$$
[Pr_L(\mathbf{K})]^{*L} \cap \mathbf{C}^* = L \cap (\{X \in \mathbf{E}^d | \langle \overrightarrow{OX}, \overrightarrow{OY} \rangle \le 1 \text{ for all } Y \in \text{bd } \mathbf{K} \} \cap \mathbf{C}^*)
$$

= $L \cap \mathbf{K}^*.$

94 K. BEZDEK Isr. J. Math.

Since L is totally orthogonal to aff C therefore $L \subset \mathbb{C}^*$ and so $[Pr_L(\mathbf{K})]^{\dagger}L =$ $[Pr_L(\mathbf{K})]^{*L} \cap \mathbf{C}^* = L \cap \mathbf{K}^*$. We have proved that $O \in \text{rel int } F_m^*$. This implies that aff $F_m^* = L$ from which we get that

$$
[\text{cl}(Pr_L(\mathbf{K}))]^*{}^L = [Pr_L(\mathbf{K})]^*{}^L = L \cap \mathbf{K}^* = F_m^*.
$$

As a partial result we have got that $Pr_L(K)$ is bounded. The Lemma implies that $I_i[\text{cl}(Pr_L(\mathbf{K}))]$ is the smallest integer n such that there exist affine subspaces $\hat{L}_1, \hat{L}_2, \ldots, \hat{L}_n$ of L of dimension dim $L - l - 1$ with the property that every face of the polar set F_m^* can be co-illuminated by at least one of the affine subspaces $\hat{L}_1, \hat{L}_2, \ldots, \hat{L}_n$, where $0 \leq l \leq \dim L - 1$. We distinguish Case 1: $F_m^* = \mathbf{K}^*$ and Case 2: F_m^* is a face of dimension $\leq d^* - 1$ of \mathbf{K}^* , where dim $\mathbf{K}^* = d^* \geq 1$.

CASE 1: Either $K = cl(Pr_L(K))$ or K is a cylinder with base $cl(Pr_L(K))$. Thus, it is obvious that $I_l(K) \leq I_l[\text{cl}(Pr_L(K))]$. Finally, as $\text{cl}(Pr_L(K))$ is compact it is sufficient to recall the known fact that

$$
I_l[\operatorname{cl}(Pr_L(\mathbf{K}))] \leq I_0[\operatorname{cl}(Pr_L(\mathbf{K}))] < +\infty
$$

(see $[1]$ or $[4]$).

CASE 2: F_m^* is a face of dimension $\leq (d^* - 1)$ of the d^* -dimensional compact convex set $K^* \subset E^{d^*}$ with $O \in \text{rel int } F_m^*$ and dist $(\cup \mathcal{F}^*, O) > 0$. We have seen that $\left[\text{cl}(Pr_L(\mathbf{K}))\right]^* L = F_m^*$, where $O \in L = \text{aff } F_m^*$ is the orthogonal complement of aff C in \mathbb{E}^d . Since F_m^* is bounded therefore Case 1 and the Lemma imply that there are affine subspaces $H_1(m), H_2(m), \ldots, H_n(m)$ of L of dimension dim $L - l - 1$ with the property that $n = I_l[\text{cl}(Pr_L(\mathbf{K}))]$ and every face of the polar set F_m^* can be co-illuminated by at least one of the affine subspaces $H_1(m), H_2(m), \ldots, H_n(m)$, where $0 \leq l \leq \dim L - 1$. Let H $(H^+$, resp.) be the supporting hyperplane (supporting half-space bounded by H, resp.) of K^{*} in \mathbf{E}^{d^*} with $H \cap \mathbf{K}^* = F_m^*$. Let H_i be the affine subspace of \mathbf{E}^{d^*} of dimension $d^* - l - 1$ orthogonal to aff F_m^* with $H_i \cap \text{aff } F_m^* = H_i(m)$, where $1 \leq i \leq n$. Finally, let $B^{d^*}(O, R)$ be a d^* -dimensional closed ball of E^{d^*} centered at O with radius $R > 0$ such that int $B^{d^*}(O, R) \supset K^*$. There are many ways to rotate H_i about $H_i(m)$ toward O. We choose the following. Let h be the affine function which is positive on H^+ and zero on H and which satisfies $|h(P)| = 1$ for points P lying at distance 1 from H. For $i = 1, ..., n$ let $H_i[\epsilon] = \{X \in \mathbb{E}^{d^*} \mid \overrightarrow{OX} = \overrightarrow{OQ} + \epsilon \cdot \overrightarrow{QP} + h(P) \cdot \overrightarrow{QO} \text{ with } P \in H_i\}$ of dimension

 $d^* - l - 1$, where Q is a point in $H_i(m)$ and $\epsilon > 0$. One can easily verify that $H_i[\epsilon]'\cap H^+\cap B^{d^*}(O,R)$ tends to $H_i(m)'\cap B^{d^*}(O,R)$ in the Hausdorff metric, as ϵ tends to 0. (The notation ' is the same as in the Lemma.)

Now the claim is that for some $\epsilon > 0$ and for every face F^* of K^* disjoint from O one of the affine subspaces $H_i[\epsilon]$ co-illuminates F^* , where $1 \leq i \leq n$. If not, then there is a sequence of faces $F^*(k)$ of K^* which are disjoint from O and $F^*(k)$ intersects each of the sets $H_i\left(\frac{1}{k}\right)'$, where $1 \leq i \leq n$. The Blaschke selection theorem ([9], pp. 98) implies that a subsequence of the sequence $F^*(k)$ will converge. Say the limit is M. M cannot contain O , since the faces of K^* which do not contain O are bounded away from O. Because O is a relative interior point of F_m^* , it follows that the same holds for every relative interior point of F_m^* , and therefore M does not intersect the relative interior of F_m^* . As M is convex, this shows that $M \cap F_m^*$ is contained in a proper face, say F^* , of F_m^* . But M must intersect each of the Hausdorff limits of the sequences $H_i[\frac{1}{k}]' \cap H^+ \cap B^{d^*}(O, R)$. These Hausdorff limits are just $H_i(m)' \cap B^{d^*}(O, R)$ and one gets a contradiction, since that implies that F^* is not co-illuminated by any of the affine subspaces $H_i(m)$.

This completes the proof of the theorem.

ACKNOWLEDGEMENT: The author is indebted to the referee for the valuable remarks which simplified the proof of Case 2.

References

- [1] K. Bezdek, *Hadwiger-Levi's covering problem revisited,* in *New Trends in Discrete and Computational Geometry* (J. Pach ed.), Springer-Verlag, Berlin (to appear), pp. 199-233.
- [2] K. Bezdek, *The problem of illumination of the boundary* of a *convex body by arlene subspaces,* Mathematika 38 (1991), 362-375.
- [3] K. Bezdek, *On the illumination of smooth convex bodies,* Arch. Math. 58 (1992), 611-614.
- [4] V. G. Boltjanskii, *The problem of the illumination* of *the boundary of a convex body On Russian),* Izvestiya Mold. Fil Akad. Nauk SSSR I0 (76) (1960), 77-84.
- [5] V. G. Boltjanskii and P. S. SoItan, *Combinatorial Geometry* of *Various Classes of Convex Sets,* Shtiintsa, Kishinev, 1978.
- [6] I. Golberg and A. S. Markus, A certain problem about the covering of convex sets with homothetic ones (in Russian), Izvestiya Mold Fil. Akad. Nauk SSSR 10 (76) **(1900), 87-90.**
- [7] H. Hadwiger, *Ungelaste* Probleme, Nr. *20,* Elem. Math 12 (1957), 121.
- [8] H. Hadwiger, *Ungel6ste Probleme, Nr. 38,* Elem. Math. 15 (1960), 130-131.
- [9] S. R. Lay, Convex *Sets and their Applications,* Wiley and Sons, New York, 1982.
- [10] F. W. Levi, *Uberdeckung* eines *Eibereiches dutch Paralielverschiebungen* seines offenen Kerns, Arch. Math 6 (1955), 369-370.
- [11] P. McMullen and G. C. Shephard, Convex *Polytopes* and *the Upper* Bound Con*jecture,* Cambridge Univ. Press, Cambridge, 1971.
- [12] P. S. Soltan, *Towards the problem of convering and illumination* of *convex sets (in Russian),* Izvestiya Akad. Nauk. Mold. SSSR 1 (1963), 49-57.